MicroCIiM

An Architectural and Owner's Manual

DLA20G-87-12-G017
relivery Order $002

Dr. J. M. Westall
Dy, A. W. Madison

Bapiraju Buddhavarapn
Sudhiv Moolky

Depariment of Computer Science
Clemson University
Clemson, SO Z0834-186G0

,,,,,,,,,

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

ring burden foe trgatlaciion o idfermation 1 csUmAted t Avecage 2 moyr prr saponse, ineluding the ime for reviewing ingteyalions, searching existing data sources,
4 matnt3ining 1he Jata needed, gnd complottng and re nfeang e Lolwetusn of ipfaemation $end cGMMENTS Fegaraing this Durden estirate or sny ather asper? of \’;«Q
Al AR, wgludify suggestions for reduzing thes Burden 10 Washington Hoadmuarters Services, Durectorate for information Qoerations and Peports 1215 JeHerson
Daws 7. 3018 1204, Mrlington, V& 22202 4307, and tn the Dftica ot '\MM«;EH-.-"'. and Sudget, Panerwark Redurtion Projes (0704-0188), Washingten, UL 20563_ A

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
May 29, 1992 Final 09/88 to 05/92

4, TITLE AND SUBTITLE 5. FUNDING NUMBERS

MicrcCIM: An architecture Manual; MicroCIM: An Operator's Manual DLA900-87-D-0017 DO 0002

6. AUTHOR(S)

Dr. J.M. Westall, Dr. A.W, Madison, B. Buddhavarapu, S. Moolky

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Clemson Apparel Research ‘
500 Lebanon Road
Pendleton, SC 29670

3. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER
Defense Logistics Agency umae

DLA-PRM
Room 4B195 Cameron Station
Alexandria, VA 22304-6100

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

t
i
"‘/

i

13, ABSTRACT (Maximuym 200 words)

Computer Integrated Manufacturing (CIM) uses computer and network technology to facilitate the
interaction of machines and personnel involved in the manufacturing process. The goal of CIM is to
provide effective real-time monitoring and management of the entire manufacturing process. CIM is
widely viewed as the ’missing link in providing quick response within the apparel manufacturing industry.

This project supported the development of a distributed computer operating system to be used as a platfonﬁ
for CIM. The MicroCIM research has demonstrated that a true distributed system with multitasking
and Local Area Network capability can be built upon computer systems costing significantly less than
one thousand dollars per network node.

18, SUBJECT TERMS 15. NUMBER OF PAGES
80
Advanced Apparel Technology, MicroCIM, Distribution System 16. PRICE CODE
T SECURITY CLASSIFICATION 18, SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION |20 LIMITATION OF ABSTRACT |
OF REPORT OF THIS PAGE OF ABSTRACT
unclassified unclassified unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prascerbad by ANSI Std. 239-18
298-102

MicroCIM

An Architecture Manual

Dr. J. M. Westall
Dr. A. W. Madison

Bapiraju Buddhavarapu
Sudhir Moolky

Department of Computer Science

Clemson University
Clemson SC 29634-1906

Table of Contents

1. Introduction to Computer Integrated Manufacturing, 4
2. Architecture of mi“croCIM ... 7
2.1 The Kernel . ..ottt 10
2.1.1 Process Managementoeiuieniniiiiiiiaenns 11
2.1.1.1 Process Scheduling it 12
2.1.1.2 Dispatchingcovvriiin i 13
2.1.1.3 Process Terminationcoueuenvnene. 13
2.1.2 Memory Managementoieeuneennerennienenns 14
2.1.3 Local Inter Process Communication 15
2.1.3.1 Message Passingcooiiiiiiiin, 16
2.1.3.2 Issues in Message Implementation 16
2.2 The Network Management Systemcocveinonann. 18
2.2.1 The Input and Output Packet Managers
2.2.2 Addressing and Naming,
2.2.3 The Connection Managerocvuiiuinnenurnnennns
2.2.4 Network Application Program Interface

SE#D, uti K DALY AT bbbl | sy
757" / 4”/5;) f&ﬁ&W/ SO O T PS5 cf’é pist | Special

2.3 Dynamic Network Program Loadert 26

2.3.1 Sender ProCcesscvvuuiiiniiiiiriiniiiaia 28

2.3.2 Receiver Processcoiiiiiinieniniieneeentennnns 28

2.3.3 Dynamic Linkingoiiiiiii i 29

2.4 Input/Output SUbSYStEMttt 30

2.4.1 The Window Systemouiiniiinrrennienenenen. 30

2.4.1.1 The Window Server 31

2.4.2 The Keyboard Systemcoiiiiiieiinannnn 32

2.4.2.1 The Keyboard Serverovvivnvn... 32

3. Performance Evaluation ittt iinninnrnannnens 134

3.1 Performance Measurescouiuiuinimnrnnennnennnennns 34

3.2 The Test Workloadt 35

3.3 RESUIS .ottt e e e e 36

331 Local IPC i e 36

3.32 Network IPC i i 37

4, CoNCIUSIONS ..o v ittt ettt e e e e e 44

R 20 (=5 =3 o1 PP 45
3

1. Introduction to Computer Integrated Manufacturing

The manufacturing environment has changed dramatically in the last few
years. Two major driving forces behind the changes are the stiff worldwide competition
among manufacturing companies and the development and utilization of new technology
which includes microprocessors, robots, databases, local area networks, artificial intelli-
gence and others. The manufacturing environment has evolved from manual operation to
semiautomatic operation to a high degree of automation making extensive use of computers

and other automated equipment.

A Computer Integrated Manufacturing (CIM) system is an interconnected sys-
tem of material processing stations capable of automatically processing a wide variety of
part types simultaneously and under computer control. The system is interconnected by
a material transport system and a communication network for integrating all aspects of man-
ufacturing. The communication network not only transfers information, such as programs,
between processing stations, but also supports the coordination, monitoring, control, and
management of the entire system.

A high degree of automation, integration and flexibility are essential charac-
teristics of an automated system. Flexibility can take a number of forms, including, volume
flexibility — the ability to handle changes in the volume of production, routing flexibility
— the ability to route parts through the system in a dynamic fashion, and product flexibility
- the ability to handle requests for a wide variety of products, including the ability to reconfi-
gure the system.

CIM is a manufacturing strategy whose objectives are improved productivity
and reduced production costs. These benefits are obtained through the integration of all
computer systems involved in the production process. Components of a CIM system typical-
ly include CAD workstations, real-time production monitoring and control systems, order
and inventory control systems, and data terminals used by equipment operators. Real-time
production monitoring and control systems include sensors, actuators, industrial robots,
computerized numerical control, etc. These components function as an integrated unit after
they are physically connected by a high speed local area network (LAN) and equipped with
software systems designed for distributed operation.

The concept of a manufacturing cell is important in automated manufacturing.
Manufacturing operations are broken down into cells, with each cell responsible for the
manufacturing of a specific part family. The cells are interconnected by a transport system
for materials and finished products. Each cell has one or more computerized numerical

control machines or robots that process the parts. The worked pieces are then routed to
other manufacturing cells for subsequent processing.

An illustration of a CIM system is shown in figure 1.1. A simple communica-
tions network called the Cell Network is used by a computer called the Cell Controller to
monitor and reconfigure individual manufacturing machines. The cell controllers and other
computer systems (PCs or mainframes) involved in the manufacturing process are intercon-
nected by a local area network called the Factory Network.

MINI/Mainframe

Factory Network
(Local Afea Network)

Cell 00qtroller 1 Cell Controller m

Machine 1,1 Machine 1,k Machine m,1 Machine m,k

Figure 1.1 A typical CIM system

The shop level control system, consisting of a host computer and the equip-
ment cell controllers, manages the coordination of resources and jobs on the shop floor.
The cell controllers are low memory, intelligent systems that require that programs or data
for cell devices be transferred from shop level computers.

As an example of the kind of interaction between the cell controllers and
the host computer consider the flow of bundled apparel parts in a plant. When a bundle
arrives at a workstation, a bar coded ticket attached to the bundle could be scanned by
a cell controller computer. The cell controller would in turn transmit a message across the
local area network to alert the host computer that work is about to begin on this bundle.
The host computer would then access a file of data and extract information concerning
the size and style of the problem. The size and style information would then be used to
access a computer program stored in a database accessible to the host computer. This pro-
gram, which would be tailored to the needs of an advanced technology sewing device, would
be transmitted across the LAN to the cell controller. This program would then be placed
into execution on the cell controller and would direct the movement of the needle across
the fabric.

The benefits of integrated automated manufacturing include:
 Increased productivity and reduction of design to production cycle time.
¢ Reduction in reconfiguration time when product requirements change.

¢ Elimination of human error in machine setup and reduction of machine setup
time.

e Reduced raw material and finished good inventories.
o Improved responsiveness in order—driven production, and
» Effective usage of equipment.

Despite these potential benefits, the development of an open architecture for CIM has been
a slow process. Obstacles have included both a proliferation of competing standards for
computer networks and a lack of standard interfaces and protocols for machine control
functions. In the absence of accepted standards computer manufacturers have developed
a variety of proprietary, competing networked systems described as CIM platforms.

A demonstration of the viability of large-scale, open CIM architecture re-
quired a multi-year commitment by corporate giants GM and Boeing. Their effort resulted
in the development of the MAP (Manufacturing Automation Protocol) and TOP (Technical
and Office Protocol) architectures. MAP/TOP based systems have now established their
value in automobile and aircraft manufacturing and are presently making inroads into other
heavy industries.

2. Architecture of MicroCIM

The proven benefits of CIM are directly applicable to apparel manufacturing
and other light industries. Unfortunately, the cost of components is a formidable barrier
to the adoption of the MAP/TOP architecture. Cell controller nodes in heavy industry CIM
networks are computers capable of running complex operating systems such as UNIX or
0S/2. Memory requirements for such systems are now in the range of six to eight mega-
bytes. The MAP protocol requires the IEEE 802.4 token bus LAN. IEEE 802.4 attachment
boards have historically been several times as costly as their more common ethernet or
token ring counterparts. When the cost of system software is included, each reasonably
configured MAP node can cost significantly more than $10,000.

MicroCIM is a distributed computer operating system, designed and devel-
oped at Clemson University. The objective is to provide CIM functionality to small apparel
manufacturers in a cost effective package in a way that provides a reasonable migration
path to a full MAP/TOP system.

The operating system is designed to be small, portable, and support multi-
tasking and distributed processing. It is written in the C programming language and is devel-
oped on Intel 80x86 based personal computer systems.

A typical CIM system software configuration is illustrated in the figure below.

Network management system
w/ support for distributed processing

SYSTEM /]_ocal multitasking operating system
APPLICATIONS / APPLICATIONS
NMS 7 / NMS
LOS / LAN LOS
awl [| TS TOTO H/W
Node 1 Node n

Figure 2.1. A CIM system software configuration

|

Each node in the network can either be a PC or a cell controller. The operating system
on each node functions independently of the operating system running on any other node.
Local resources, such as memory and CPU, are owned and managed by the local operating
system. Global resources, such as secondary storage and service names, are obtained by
request from a remote site with the intervention of the network control and management

components.

MicroCIM is a real-time operating system. Unlike general purpose operating
systems, it is not a development system. Program development is separated from the opera-
tional system itself. Applications have to be first developed on a development system before
they can be used on the operational system.

The operating system is designed to be portable across different hardware
platforms with minimal changes to the system software. Its design is based on a modular,
layered concept. The layered architecture of MicroCIM is illustrated in figure 2.2. The ker-
nel layer provides a well defined set of services to all the layers above it. The network
management layer makes use of the kernel services to provide communication facilities
to the application layer. The internal structures, mechanisms and algorithms used in one
layer are not visible to the layers above it. Thus, changes effected in one layer have minimal
impact on the layers above it so long as the interface between the layers is not changed.

The kernel of the operating system provides facilities for process manage-
ment, inter process communication and memory management within a site. A preemptive,
multi-tasking scheduler permits multiple application programs to run concurrently on each
system in the network. The use of multi-tasking greatly simplifies the design of CIM applica-
tion programs since each of the application programs can concern itself with performing
only a single task. Operating system and network management software use a technique
known as message passing to communicate and synchronize their activities within a given
system.

An ARCNET LAN is currently used at the physical layer. ARCNET provides
data rates of 2.5 Mbits/second, an order of magnitude greater than RS-422 and RS-485
networks, for about $50 per network node. Migration to faster, more expensive LANs such
as Ethernet and Token Ring will require additional device drivers.

The network management system provides the interface between application
programs and the ARCNET LAN. Development of distributed applications is facilitated
by a high level application program interface (API) to network services. Network services
include both connectionless(datagram) and connection oriented management.

NETWORK PROGRAM LOADER SERVICES

. Receiver

Remote program service daemons

NETWORK MANAGEMENT & I/O SUBSYSTEM

Applications Program Interface

Connection Name Server

Manager

Network services run-time library

Keyboard
Server

KERNEL
Process :r H/W I'nterg_x‘gt_lj_qggl_q@___ IPC E Memory
Dispatcher i Timer EKeyboar(li Network 1 (Message System)i Mgt.
E MICROCOMPUTER HARDWARE ARCNET E
"""""""""""""""""""""""""""" Network
Connection

Figure 2.2 Architecture of MicroCIM

An application can associate logical names with the network addresses it uses in conducting
communications. A nameserver program transparently provides services analogous to a
telephone directory assistance. This permits one application to send data to another using
the target application’s “name” rather than address. When network messages are received,
the recipient can likewise determine the "name” of the sender when required.

Network management is simplified through remote program loading facilities.
Diskless workstations and cell-controllers can be used throughout the manufacturing facil-
ity. The operating system and all application programs can reside on one or more host
personal computers. When the network is started, the operating system is down loaded to
all diskless units. After the operating system is running, applications can be started. Any
application can request that another application be started as a new task on any node in
the network. The requestor need only specify the name of the application to be started as
a new task on any node in the network. the requestor need only specify the name of the
application to be started, the system its code resides on, and the system it is to be run
on. Parameters passed to the application to be started enable it to send data or receive
data from the program that initiated it.

The ultimate goal of this effort is to demonstrate a cost effective computer
system that will simultaneously support real-time shop-floor data collection and analysis,
automatic machine configuration, and factory control at a reasonable cost.

A detailed design of the various components of the operating system are de-
scribed in the following sections.

2.1 THE KERNEL

The kernel is the lowest layer of the operating system directly above the hard-
ware. It provides facilities for process management, inter process communication and syn-
chronization, memory management and interrupt management.

Operating system services are provided through a system call mechanism.
Since system calls access kernel data structures they are implemented as critical sections.
This is accomplished by executing all kernel functions within a software interrupt handler.
The software interrupt handler assures that hardware interrupts are disabled while it is
servicing requests. A SYSTEM_INTERRUPT vector is reserved for kernel system calls.
When a system call is made, parameters to the call including indication of the type of call
are placed in registers and a software interrupt to the system interrupt is generated. The
system interrupt service routine performs a switch on the type of the system call and calls
an internal function with the parameters that were passed to it.

10

The details of the various components of the kernel are presented in the fol-

lowing sections.

2.1.1 Process Management

Process management deals with the operating systems policies and mecha-
nisms for sharing the CPU resources among user and system processes. A process is typical-
ly viewed as a program in execution. Process control and management is performed through
the use of Process Control Blocks (PCB). The PCB contains descriptive information about
the process such as: process identification, process type (user/system), process priority,
state information, stack size and location, resource requirements and state, linked list point-

ers, etc.

A process can exist in any one of four states: running, ready, blocked or free.
A process is considered to be in free state before it is brought into the system and after
it has terminated. All active processes in the system are in one of running, ready or blocked
states. A process is said to be running when it is using the CPU and executing instructions.
The ready state refers to the state in which a process is prepared to execute if given control
of the processor. A process is in this state when it has all the resources it requires except
the CPU. A process is said to be blocked when it is active, but is waiting to acquire some
resource. Figure 2.3 shows the state transitions that a process can pass through.

Processes are of two types: system and user. A system process is one that
is supplied by the operating system to aid in the controlled sharing of system resources.
For example, the window server is a system process that controls access to the video screen.
All system processes in MicroCIM are created at system initialization time. All application
programs run as user processes.

The creation of a process involves the construction of a PCB with appropriate
initializations. The information required to create a process is the process’ priority, stack
size, number of mailbox handles required, type (system/user), and the starting address of
the code that the process is required to execute. A request for process creation with this
information will initiate the following sequence of events:

« Acquire a process control block. (This is acquired from the array of free PCBs.
The index of this PCB forms the process id to this process and uniquely defines
the process in the system.)

e The process type and process priority are recorded in the PCB.

e The requested number of mailbox handles are allocated.

11

terminate/completion

schedule/
dispatch

create

service request

interrupt (preempt)

service
bl OCk granted

Figure 2.3 Process state transition diagram
o The requested stack area is allocated.

terminate

(service request)

 The process state is initialized and recorded in the PCB. This reflects the initial
values of all registers and the address at which the process is to start executing.

To introduce a process into the system, its PCB is inserted in the ready queue of processes.
This queue represents all processes that are ready to execute. All processes in the ready
queue are linked together to form a chain of active ready processes.

A process may get blocked waiting for an event to occur (such as receiving
a message or waiting for a quantum of time to elapse). In such a case, its PCB is removed
from the read queue and inserted in the appropriate suspend queue.

2.1.1.1 Process Scheduling

The process of selecting a time in the future for initiating the execution of
a process is called scheduling. MicroCIM employs a preemptive priority based time sliced
scheduling technique.

The ready queue is maintained in order of decreasing priority. The first of
the highest priority processes will be selected next for execution. All ready processes with
the same priority are serviced in FIFO order. Thus a low priority process cannot execute
as long there is another ready process with a higher priority.

Each process may run uninterrupted for at most one time slice. The length
of the time slice, measured in number of clock ticks, is a fixed at system initialization.
A process can be preempted before its time slice expires if another process with a higher

12

priority is made ready. Preemptive scheduling is well suited to a real-time environment
because it is characterized by a predictable response to high priority processes. This may
however cause starvation of low priority processes. Hence choosing the priority of a process

is an important decision.

2.1.1.2 Dispatching

Dispatching causes a scheduled process to gain access t0 the CPU. This is
accomplished through the use of a dispatch interrupt service routine. A dispatch interrupt
can occur either if a process exhausts its timeslice or if a preemption takes place.The dis-
patcher accesses the PCB of the process that is interrupted, saves the state of the process
in the PCB and inserts it in the ready queue according to the scheduling policy. It then
accesses the PCB of the process scheduled to run next, and loads the physical registers
with its saved values to effect a start-up of the process.

Timer interrupt management is a critical part of process dispatching. When
a process is dispatched it is given a full quantum of timeslice. Every time the timer interrupt
occurs, the timeslice is decremented. A dispatch interrupt is generated when the timeslice

is reduced to zero.

The timer interrupt service routine also services the delay queue. The delay
queue is a list of process that are suspended for a specified period of time. It is maintained
in increasing order of relative delay. Relative delay of a process is the number of clock-ticks
to wait after the delay of that process’s predecessor expires. Thus the absolute delay of
a process is the sum of the relative delays of all processes preceding it in the delay queue.
For the first process in the delay queue, its relative delay is the same as its absolute delay.
Each time the clock interrupt occurs, the timer isr decrements the relative delay of the first
process in the delay queue, and schedules it if its delay is reduced to zero.

2.1.1.3 Process Termination

A terminating process generates a terminate interrupt to relinquish all the
resources it has acquired. The kernel dequeues the process’s pcb from all the system
queues, destroys all its mailboxes, deallocates the stack space, frees any network resources
that are held by the process and invalidates its process id.

13

2.1.2 Memory Management

Memory management in MicroCIM is designed to be fast and simple. All
processes reside completely in main memory itself; thereby making swapping unnecessary.
The kernel allocates memory for essential data structures for each process when itis created
and brought into the system. This memory is deallocated by the kernel when the process
terminates. Contiguous chunks of memory are allocated dynamically as and when requested
by the processes. A process is responsible for freeing all memory it requests while it is
an active process. Otherwise, that memory will remain unused.

The memory management system uses a first-fit algorithm to manage
memory. A contiguous pool of memory is allocated when the system is first initialized.
Blocks are allocated from this pool upon request, and free blocks are maintained in a linked
list. Each free block contains two fields at its head: the size of the free block in bytes and
a pointer to the next free block in the list. The size field is adjusted to reflect the bytes
consumed by the two fields at the head of the block. The list is maintained in ascending

order by address.

When a memory request is made, the kernel searches the list for the first
block that contains enough space to accommodate the request. If the request consumes
all the memory of the block, the block is removed from the list, and its preceding block
is linked to its succeeding block. Otherwise, a new block is created at the end of the re-
quested chunk of memory and its size field updated to show the remaining number of bytes
from the parent block.

When a block is returned to the free pool, the system checks to see if the
block immediately preceding it or following it is free, and combines the blocks if possible.
Three cases are possible when freeing a block:

1. If it can be combined with the block immediately preceding it, the change in
the size of the block is reflected in the size field of the preceding block. In this
case the list pointers remain the same.

2. If it can be combined with the block following it, the change in the size field
is reflected in the freed block. The list pointer of the freed block now points to
the block that was previously pointed to by its following block.

3. If it can be combined with both the preceding and following blocks the change
is reflected in the size field of the preceding block. The list pointer of the preced-
ing block now points to the block previously pointed to by the following block.

14

The system makes no attempt to recover from external fragmentation if a memory request

fails.

2.1.3 Local Inter Process Communication

Interprocess synchronization and communication (IPC) are necessary to sup-
port concurrent process execution. IPC mechanisms allow arbitrary processes to exchange
data and synchronize execution. Communication is required to allow cooperating processes
to exchange data. Synchronization is necessary to preserve system integrity and to prevent
timing problems resulting from concurrent access to shared resources by multiple pro-

Cesses.

All processes executing in a multitasking environment compete with other
processes for system resources, such as CPU and memory. However, the handling of com-
petition among process in a multitasking system depends largely on the nature of the specif-
ic process. System-defined processes tend to be self sufficient and separate from other
processes, while programmer-defined processes that collectively constitute a single logical
application often cooperate and share common resources. The operating system manages
the use of system resources on behalf of such user processes in a manner that is often
transparent to the related processes, and no explicit synchronization statements need to
be provided in their source code for that purpose.

There are two facets to interprocess communications in a distributed multi-

tasking environment:
e local IPC - between processes on the same node, and
e network IPC - between processes across two different nodes.

Local IPC is effected through a set of communication primitives that are provided by the
kernel of the operating system. Network IPC requires the support of a LAN, a set of daemon
processes and interrupt handlers in addition to the communication primitives of the operat-
ing system. Application programs communicate by the use of an application program inter-
face (API) that keeps the details of the network transparent to the user.

A variety of choices were available in selecting a method for interprocess
communications and synchronization. Message passing was selected as the most appropri-
ate method for this project. Messages are a simple mechanism suitable for IPC in both
centralized as well as distributed environments. Sending and receiving messages is a stan-
dard form of inter-site communication in computer networks, making it very attractive to
augment this facility in the operating system. For this reason, messages are the most popular
IPC mechanism in distributed operating systems.

15

2.1.3.1 Message Passing

A message is a collection of information that may be exchanged between
a sending and a receiving process. Messages may contain control/status information or data.
Messages represent requests or responses for service in the system. All actions are con-
trolled via this message-passing scheme.

2.1.3.2 Issues in Message Implementation

Message passing in MicroCIM is an indirect message communication method,
where messages are sent to and received from special repositories called mailboxes. A
mailbox is a named data structure that can be thought of as a queue of messages. Processes
can either send a message to a mailbox (enqueue a message) or receive a message from
a mailbox (dequeue a message). This form of message communication requires additional
primitives for creating and deleting mailboxes.

Message operations can be of a conditional or unconditional class. In a uncon-
ditional send/receive, the process will block until the operation can be carried out - regard-
less of how long the suspension may last. A conditional send/receive may be used to insure
that the process blocks for no longer than a given amount of time. The maximum time
for which the process may be suspended is specified in the send/receive call. If a maximum
time of 0 is specified, then the send/receive will not block at all and will either be carried
out immediately or a failure code will be returned. The time units for block time is based
on the frequency of occurrence of the timer interrupt on a given hardware.

Message exchange between two processes is effected by copying the whole
message from the sender’s address space into the receiver’s space.

A mailbox must be created by the mcreate() system call before it can be used.
The name of the mailbox, the number of messages that it can buffer and the maximum
length of a message it can accept are specified at mailbox creation time. This permits great-
er flexibility in the use of the mailbox and minimizes memory requirements. Upon succes-
sful completion, the create system call returns a mailbox handle which is a pointer to the
mailbox object. This handle is then used in all subsequent calls to access the mailbox. The
process that creates a mailbox becomes the “owner” of the mailbox and is the only process
that can later destroy the mailbox.

A mailbox may be created in any one of three modes: M_SEND, M_RECEIVE
or M_SENDRECEIVE. The mode indicates the operations that other processes can use on
the mailbox. The owner process can always send/receive to/from the mailbox. A receive
operation on a mailbox that has been created in the M_SEND mode or a send operation

16

on a mailbox that has been created in the M_RECEIVE mode, by a non-owner process

will fail.

Buffer space is pre-allocated to a mailbox when it is created, instead of allo-
cating a message buffer when a message is sent. The latter technique is a more general
implementation of buffer space management and does make better utilization of memory.
However, the overhead involved in allocating and de-allocating buffer space on every mes-
sage send/receive is unacceptable in this environment.

A process can attach itself (gain access) to a mailbox by using the mopen()
system call, specifying the name of the mailbox. A mailbox must be created before it can
be opened. A non-owner process that tries to open a mailbox before the owner process
has created it will receive a failure code on the open. The process must then retry until
the owner process has had a chance to create the mailbox.

A process that opens a mailbox can detach itself from it by the mclose() system
call. A process that creates a mailbox can destroy the mailbox by the mdestroy() system
call. mdestroy() de-allocates the mailbox’s buffer space. If any process(es) is blocked on
the mailbox waiting to receive a message or send a message, the send/receive operation
is terminated and a.failure condition is returned to the sending/receiving process via the
return code of the send/receive. Any messages left in the mailbox when it is destroyed are
lost. A process that tries to send/receive to/from a mailbox after it is destroyed will receive
a failure code from the operation.

Mailbox based communication is very versatile in that it can provide one-to-
one, one-to-many, and many-to-many mappings between sending and receiving processes.
One-to-one mappings provide a private communication channel between two processes.
One-to-many mappings provide for a single sender with multiple receivers. Many-to-one
mapping is important for server processes.

In order to use a mailbox for interprocess synchronization a mailbox must
be allocated for each type of resource whose use must be regulated. A number of messages
equal to the total number of resources available will be sent to the mailbox initially. Each
process wanting to use a resource of this type must first execute a blocking receive on the
mailbox corresponding to the resource type. When the process is finished with the resource,
it will send a message back to the mailbox from which it received it. Critical regions of
a code can be protected by conceptualizing them as types of resources in which there is

only one resource of a type.

2.2 THE NETWORK MANAGEMENT SYSTEM

The job of network management, as a part of a distributed operating system,
is to provide intra- and intersite communications among consenting processes. Network
IPC in MicroCIM is implemented by a set of interrupt service routines and daemon pro-
cesses that provide low level software interface with the physical network.

Fig 2. gives an overview of the network architecture developed for MicroCIM.
The network management system consists of a device driver (interrupt service routines),
an input packet manager, an output packet manager, a name server, a communications
manager and an application run-time library.

An ARCNET LAN is currently used as the physical layer. ARCNET provides
data rates of 2.5 Mbits/second. ARCNET uses a contention—free token passing access
scheme. A token is passed through every station on the network, whether it needs to transmit
or not, giving each station an equivalent share of the network time. A station can only
transmit a message when it has the token. ARCNET provides direct acknowledgement capa-
bility by which stations can indicated immediately if they can accept data and acknowledge
when they have received data. This ensures efficient and successful first time transmissions.
ARCNET can be wired in a star or bus topology and can use a combination of different
types of cabling.

The interrupt service routine (ISR) provides the interface between the ARC-
NET hardware buffers and the incoming packet manager (IPC) and outgoing packet manag-
er (OPC). The device driver services interrupts generated by the ARCNET card. It signals
either the IPC or the OPC of the occurrence of an interrupt. The IPC receives incoming
messages and queues them for receipt by an application process. The OPC receives requests
from application processes for the transmission of messages to other nodes, and carries
out the physical interaction with the ARCNET adapter to accomplish transmission.

The name server, network program loader daemons and application processes
interact with the network via the IPC and OPC. The function of the name server is to allow
a node to obtain access to a resource on the same or a different node. The connection
manager allows processes on different nodes to establish virtual communication circuits
for the exchange of transactions and information. The interface to these systems is provided
by a run-time library.

Logical/physical interprocess linking is accomplished through the use of ports.
The port identifier, an integer, is an index into a port table maintained by the system. Net-

18

work resources that are allocated to processes are associated with specific ports owned by

the requesting processes.
A detailed description of each of the components of the network management

system is given below.

2.2.1 The Input and Output Packet Managers

The IPM is responsible for transferring incoming packets from the ARCNET
adapter to the application processes.

@ e Network
- ARCNET -7 “=-«._ Connection
e / Adapter
s Receive
Complete
: lication
Interrupt Receive Agfocess

Service

Enabled
Routine ! @

®

Mailbox Mai!box
. Receive
Receive
Complete Signal Status

Figure 2.4 Network Input Message Processing

The sequence of operations involved in receiving a message (as illustrated
in figure 2.4) are:

1. The IPC ensures that there is a buffer available on the adapter memory to receive
a packet and enables a receive operation into a specified page of adapter
memory. It then performs a blocking receive on a mailbox and waits for a re-
ceive-complete signal from the LAN interrupt handler.

2. The ARCNET adapter generates an interrupt when a packet is successfully re-
ceived.

Application
Process

. The OPM reads the request to transmit from the output-request mailbox and

constructs an internal ARCNET packet on an adapter buffer page. A sequence
number is tagged on to the message. This is done to ensure that the IPM at the
receiving end can identify duplicate messages. As mentioned earlier, a race con-
dition exists in which a message can get transmitted more than once(this occurs
if a sender times out and retransmits even though the original transmission was
transmitted correctly). The head of the packet contains the destination node and
port addresses, followed by the message buffer.

. The message to be transmitted is copied from the application process’s address

space onto the adapter buffer page.

 The OPM enables data transmission that will initiate sending the data from the

specified buffer page.

- - .-

Network
Connection

Mailbox
Output

Request

1
/ ,” Data |
Transmission
/ enabled

©®

Output
Packet

Mailbox

Manager Mailbox

Transmit
Status

Xmit complete
Signal

Figure 2.5 Network Output Message Processing

5. The ARCNET adapter generates an interrupt when transmission is complete.

6. The LAN interrupt service routine sends a signal to the transmit-complete mail-

box.

21

7 The OPM receives indication that the transmission is complete by reading the

transmit-complete mailbox.

8. The status of the transmit operation is returned to the application process on
a transmit-status mailbox associated with the port that requested the transmit
operation.

9. The application process receives the status of the transmit operation from the

transmit-status mailbox.

2.2.2 Addressing and Naming

Source and destination addressing is specified via a (logical port, physical
node address) ordered pair. An address of this type is equivalent to a Service Access Point
(SAP) in ISO terminology or a Socket in UNIX networking terminology.

Network communication between two processes requires knowledge of the
source and destination SAP addresses. For example, consider a situation where a user pro-
cess wants to communicate with a server process. To establish communication, the server
process must have a fixed SAP address which must be known to the application process
in advance. While fixed SAP addresses might work for a few key server processes that
might never change, in general, application processes often want to talk to other application
processes that only exist for a short time and cannot have a SAP address that is known
in advance. Hence, application programs do not typically use actual SAP addresses. Instead,
logical service names are defined by the applications themselves and resolved by session
layer software. This translation of logical to physical addresses is hidden from the applica-
tion processes. In this way application programs are kept free of physical addressing depen-
dencies.

The dynamic association of logical names to SAP addresses and the function
of resolving logical names to SAP addresses is handled by the name server process. The
name server maintains a database of network-wide logical names and their allocated SAP
addresses. It listens for requests on a fixed known SAP address and services three types
of requests: register, resolve and cancel.

When a new service is created, the owner process must register the service
with the name server, by sending a register request, giving both its service name and the
address of its SAP. The name server records this information in its database, so that when
queries come in later, it will know the answers.To find the SAP address corresponding to
a given service name, an application process sends a resolve request message to the name
server specifying the service name, and the names server sends back the corresponding

22

SAP address. When an application process decides to terminate its service it must invalidate
its logical service name. This is done by sending a cancel request message to the name
server specifying the name of the service to be cancelled.

2.2.3 The Connection Manager

The connection manager(CM) is a system process which handles requests
to create and terminate connections. Application programs make these requests indirectly
through the network application program interface. While processing such requests the CM
manipulates connection table entries as well as communicates with the CM on the target
node.

In MicroCIM connections are simplex. Therefore the functions performed at
the two ends are distinct. The process requesting a connection is called the SENDING PRO-
CESS and it is at the SENDING END of the connection. The process to whom the connection
is to be made is called the TARGET PROCESS and it is at the RECEIVING END of the
connection. We also use SENDING NODE, SENDING PORT, TARGET NODE and TAR-
GET PORT to identify the two machines involved in the connection.

OPEN request : First the CM allots an entry from the connection table. Then

the CM identifies the target node.
If the target node is a remote node, the CM sends an OPEN

request to the CM on the target node. The target CM makes sure that the target port is
indeed in use. If not it sends an error message back to the sending CM. It then allots an
entry in the connection table and enters control information. Finally it sends an OK back
to the sender CM. The sender CM then returns the connection id to the process which made

the OPEN request.
If the sender and target reside on the same node, then the CM

makes sure that the target port is in use. It allocates another entry from the connection
table, enters control information and returns the connection id to the requesting process.

CLOSE request : First the CM closes the connection table entry associated
with the connection. Then it identifies the target node.

If the target node is remote, the CM sends a CLOSE request
to the CM on the target node. The target CM closes the connection table entry and returns
OK to the sender CM. The sender CM finally returns an OK to the requesting process.

If the connection is local, then the CM closes both the connec-

tion table entries and returns OK to the requesting process.

Note that the CM is not involved in actual virtual circuit message passing

23

from the sender process to the target process. However the connection table entries created
by the CM are consulted at strategic points to ensure reliable message transfers.

2.2.4 Network Application Program Interface

The network layer provides facilities by which packets of information can
be routed through the network. Two kinds of services are provided by the network APL

Independent packets of connectionless organization are called datagrams in
networking terminology. A datagram facility is characterized by the fact that each packet
sent is routed independently of its predecessors. Successive packets may follow different
routes. Routing details are handled by the ARCNET adapter.

A virtual circuit is a service which, unlike the datagram facility, guarantees
delivery of the messages. It also guarantees the correct ordering of packets sent. In other
words, packets sent in a particular order will be received in exactly the same order. The
datagram, virtual circuit and naming services provided by the network management system
are accessed by application programs through the application program interface (API). The
API provides facilities for opening and closing a SAP, sending and receiving datagrams,
and finding SAP addresses associated with logical service names. The APl interface remains
the same independent of whether the communication is between local or remote pro-
cesses.A detailed description of these services is given below.

Datagram Services

1. dg_open: dg_open must be called specifying a logical name for the service before
any datagram based services are requested. Its function is to associate a SAP
with a process. It opens a port, which combined with the physical node address
comprise the SAP address. The (logical name, SAP address) pair is registered
with the name server. It also creates a dynamic buffer pool which can be used
to buffer incoming datagrams. A process that does not define a buffer pool but
attempts to repeatedly receive messages suffers an exposure to lost datagrams
since a datagram that arrives between the completion of a receive and the issue
of the succeeding receive will be lost. Use of a buffer pool greatly reduces this
exposure. No messages will be lost unless the entire buffer pool is full. The maxi-
mum size of the message to buffer and the maximum number of messages to
buffer are specified in the dg_open call. Calling dg_open indicates a willingness
to receive datagrams from any other SAP in the network. Before a datagram may
be successfully sent, the recipient must have executed dg_open.

24

2. dg_findid: dg_findid is used to obtain the SAP address associated with a particular
logical service name. It is used by a process that desires to send one or more
datagrams to a remote service. This function communicates with the name server
to resolve the logical service name into a SAP address.

3. dg_send: dg_send is used to send a datagram to a remote (or local) SAP. It builds
a standard network layer header and communicates with the output packet man-
ager to transmit the datagram.

4. dg_recv: dg_recv is used to express willingness to receive a datagram. If a data-
gram has already arrived and been placed in the buffer pool, it is immediately
returned. Otherwise, the calling process is suspended until a datagram arrives.

5. dg_recvc: dg_recve is a conditional receive. The maximum time that the calling
process can suspend waiting for the receipt of a datagram is specified in the
dg_recve call. If no datagram has been received after the interval specified has
expired, control is returned to the caller. dg_recv should not be used to poll for
the arrival of a datagram as this will unnecessarily degrade the performance of
the entire system. The multitasking facilities of the operating system can be used
to create a process dedicated to handling the receipt of datagrams. the dedicated
process can then communicate with a control process using the message passing
facility.

6. dg_close: dg_close is used to close a SAP and free the associated resources. All
SAPs that are not closed by a process are closed upon its termination. If the
task has an associated dynamic buffer pool, it is freed. A message is sent to
the name server requesting that the entry associated with this SAP be cancelled.
The corresponding port table entry is freed and associated mailboxes are closed.

Virtual Circuit Services

7. vc_open: vc_open is used when a process wants to open a virtual circuit connec-
tion to a target process. This call is built on top of dg_open and so the parameters
are the same as those required in dg_open. The extra parameter needed is the
SAP address of the target process. This is obtained by calling dg_findid. Vc_open
has to be called first before any process attempts to send messages on a connec-
tion. Since the connection is simplex, the target process is unaware of the whole
procedure. On each node there is a system process called the connection manag-
er. The connection manager(CM) is in charge of making and breaking connec-
tions. Vc_open first calls dg_open to open a port. It then sends a request to the

25

{

t . o .
CM to open a connection to the target process. Finally it creates an acknowledge-
ment mailbox in the port table entry. The IPM writes any incoming acknowledge-
ments into this mailbox.

8. vc_send: vc_send is used to send messages on a virtual circuit which was opened
by vc_open. When the CM opens a connection to the target process it creates
a connection table entry. In this connection table entry is a sequence number
to be applied to the current message on the connection. Note that this is a higher
level sequence strategy than the sequencing done by OPM and that it is not
applied to datagram messages. The sequence number is applied to the current
message along with other control information and the message is sent to the tar-
get process. A field in the control information is used to identify the fact that
this is a virtual circuit message as opposed to a datagram message. Virtual circuit
messages can be either data or acknowledgements and this is identified using
the same field. Then vc_send waits for an acknowledgement on the acknowledge-
ment mailbox with a finite timeout. If an ack is received then it’s status is checked
otherwise the current message is retransmitted(stop and wait protocol).

If the status is good then the sequence number of the ack is checked with
the sequence number of the message sent. Since the target process acks the se-
quence number received(as opposed to sequence number expected next) both
these numbers should match. If the ack number matches the current message
number then the sequence number in the connection table entry is updated for

' the next message and success is returned. If the ack number matches the previous
, message then the current message is retransmitted again. Otherwise an error
| status is returned to the caller.
If the status is bad then there is a fatal problem and the connection cannot
be used anymore. An error status is returned to the caller and it is the caller’s
responsibility to close the connection immediately using vc_close.

9. vc_close: vc_close is used to close a connection opened previously by vc_open.
Vc_open first sends a request to the connection manager to close the connection.
Then it destroys the acknowledgement mailbox following which it closes the port
entry using dg_close.

2.3 DYNAMIC NETWORK PROGRAM LOADER

A CIM network consists of a number of nodes that run MicroCIM and are
inter—connected on a communications network. One of the nodes functions as a controlling

26

host and the remaining nodes take on the functions of a cell controller. The design of
a low—cost cell controller that can support a multitasking operating system, a LAN, an effi-
cient machine interface and also provide for human operator interaction is presently under
consideration. These cell controllers would be diskless workstations with about one mega-

byte of memory.

Remote program loading facilities permit the use of diskless manufacturing
cell controllers and simplify network management. This facility is provided by a network
program loader incorporated in MicroCIM. The network program loader enables a process
on one node to establish a session with a process on another node for the purpose of inter-
changing data. When the network is started, the operating system is started on each node
in the network. When the OS is up and running, multiple applications can be started on
any node. Any application program can request that another application be started as a
new task on any node in the network. Parameters passed to the new task enable it to send
data to or receive data from the program that initiated it. Figure 2.6 illustrates the use of
the network program loader.

The network loader is implemented by two daemon processes on each node:
a sender and a receiver. The datagram services provided by the network layer are used for
communication between the user processes, senders and receivers.

The network loader facility is accessible to application programs through a
load function call provided in the run-time library. When a user process executes a load
function call, a load request packet which contains the filename, source node, target node
and the requesting process’s process id is formed. The function determines the appropriate
SAP address of the sender process on the source node, sends the load request to it, and

waits for the return of an error code. On receipt of the load request, the sender process

sends a message to the receiver process on the target node specifying the name and size
of the file to be loaded. If there is enough memory on the target node to accept the file,
the receiver process sends an acknowledgement to the sender process on the source node.
This initiates the file transfer which is accomplished by a simple hand-shaking protocol.
When the file is completely transferred the receiver process performs relocation and spawns
an independent process on the loaded program. Command line arguments to the program
can be specified along with the filename in the load request by the user process. The length
of the filename, along with its command line arguments should not exceed 80 characters.
A detailed description of the sender and receiver processes is given below.

27

2.3.1 Sender Process

This process opens two SAPs, one for receiving load requests from user pro-
cesses and another for communicating with receiver processes. When a load request is re-
ceived, it determines the size of the file and the appropriate SAP address of the receiver
process on the target node. A load-command message, containing the name of the file
and its size is sent to the receiver. Command line arguments are also sent along with the
file name. The sender process then conditionally waits for an acknowledgement from the
receiver. An ack indicates willingness on the part of the receiver to accept the file. A nak
indicates that the receiver does not have sufficient memory to accept the file. If the sender
times out before receiving a message (which could happen if the target node crashed), an
error code is returned to the user process.

File transfer between the sender and receiver processes employs a simple
hand-shaking protocol. The sender process sends the number of bytes requested by the
receiver process. The maximum number of bytes that can be sent on each request is limited
by the maximum packet size supported by the system. The sender process optimizes the
number of file read operations required by reading more bytes than are requested by the
receiver. The size of the buffer used by the sender is a system parameter. The receiver
indicates the success of the file transfer and the subsequent process creation by sending
an error code to the sender. The sender returns this error code to the user process that
made the load request.

2.3.2 Receiver Process

The receiver process opens two SAPs, one for receiving load commands from
sender processes and another for data transfer operations with senders. On receipt of a
load command from a sender process, it sends an acknowledgement indicating its willing-
ness to receive the file provided it has adequate memory.

DOS executable files are made up of two parts: a header portion and the
load module. The receiver process first requests only the first 36 bytes of the file which
contains descriptive information about the file. This is used to determine the size of the
header and the size of the load module. The relocation table contained in the header is
received into a dynamically allocated block of memory. Another block of memory is allo-
cated for receiving the load module. The load module is preceded by a 256 byte long pro-
gram segment prefix (psp) which is used, among other things, as a temporary storage for
command line parameters. The segment value of the starting address of the load module
is the start segment.

The relocation table is an unordered list of relocation items each of which
is a segment:offset pair. These two fields represent a displacement into the load module
of a word which requires modification before the module is given control. Typically this
contains the address of a variable used in the program which is initially assigned with re-
spect to address zero by the compiler. When the file is loaded into memory all variable
addresses have to be changed with respect to the starting address into which the program
is loaded. This process is called relocation and is performed as follows: each relocation
table item segment value is added to the start segment value. This calculated segment, in
conjunction with the relocation item offset value, points to a word in the load module to
which is added the start segment value. The result is placed back into the word in the load
module.

Command line arguments are copied into psp segment at offset 0x82 and
the number of bytes contained in the arguments is placed at offset 0x80. These values are
now accessible in the program through argc and argv variables. The entry point into the
loaded program is extracted from the header block and used to create a process on the
load module. An error code indicating the success of the process creation operation is sent
to the sender.

2.3.3 Dynamic Linking

Loaded programs typically perform network communications after they begin
execution. Therefore, a number of procedures used in network communications must be
linked with each application.

Static linking produces large application programs. Each time a statically
linked program is run, the main program and all procedures are loaded into memory as
a single unit. This makes very inefficient use of memory as there can be multiple copies

of the same procedure in memory at the same time.

Dynamic linking reduces the size of executable programs. Some common
mechanisms of dynamic linking are: the system call mechanism, load time dynamic linking,
execution time dynamic linking, etc.

The system call mechanism is the simplest form of dynamic linking. Unprivi-
leged applications make system calls to request operating system services. An application
uses a numeric identifier to specify the precise service being requested, and then generates
a software interrupt in order to invoke the O/S service procedure. All O/S procedures are
commonly linked with the O/S kernel and kept resident in memory in order to optimize
performance. MicroCIM uses the system call mechanism. Load time and execution time

29

linking would be useful enhancements to the system. However, any implementation based
on these methods would be difficult in the absence of global, distributed file system.

2.4 INPUT/OUTPUT SUBSYSTEM

Interactive input and output are provided by two processes: window server and
keyboard server. The window server manages a set of virtual windows. Output from the
application processes is directed to the virtual windows. The keyboard server along with
a second level keyboard interrupt handler retrieves data from the keyboard device and for-
wards it to the application processes.

The window and keyboard servers run as system processes ata priority higher
than that of the application processes to ensure timely service of input/output.

At system start-up window 0 is displayed. Pressing the F1 key will swap the
current window with the next active window (if there is one). All keyboard input is directed
to the process whose window is displayed. If the process running in the displayed window
terminates, no further keyboard input is accepted until the F1 key is pressed to display
the next active window. The keyboard server can buffer up to 10 keystrokes. When the
F1 key is pressed all buffered characters (if any) are flushed.

2.4.1 The Window System

The window system manages a set of virtual windows each of which is the
size of the display screen. A window can be accessed by only one process although a process
can own more than one window. The window server provides facilities for opening a window
(wopen), closing a window (wclose), formatted output to a window (dprintf), and changing
the displayed window (by the F1 key).

A process must open a window before it can use it and close that window

before terminating.

Application processes access window server facilities through functions pro-
vided in the application run—-time library. wopen and wclose are blocking operations. They
create a mailbox on which the requesting process waits for a reply from the window server,
after sending an appropriate request message. The request message contains indication
of the type of request (wopen or wclose) and the handle of the mailbox on which the reply
is expected. The reply mailbox is destroyed after receiving a reply from the window server.

The dprintf function is the window system’s version of printf in C language.
It copies the contents of the variables according to the format specification onto a message
buffer. The message buffer is appended to a dprintf function indication and sent to the

30

|

window server. The calling process does not wait for the window server to output this mes-

sage.

2.4.1.1 The Window Server

The window server is the only process that can modify the virtual window
data structure. Each virtual window is made up of a display buffer, a mailbox for keyboard
input through the window, an attribute field, and cursor position coordinates. The display
buffer of each virtual window maps on to the video memory of the computer. Each character
on the display screen is represented by two bytes in the video memory — one byte for the
ascii code of the character and the next byte for its display attributes.

The window server listens for requests on a known mailbox called WIN-
DOW_BOX. When a request is received it identifies the service requested from the first
field of the request message. The following actions are taken depending on the kind of
service requested:

1. WOPEN: It finds a window that is not in use, allocates a block of memory re-
quired for the display buffer, and creates a mailbox for communication with the
keyboard server. The index of the window in the virtual window array is returned
to the user process via the mailbox specified in the wopen request message.

2. WCLOSE: The handle of the window to be closed is extracted from the request
message. The display buffer of the window is freed and the mailbox associated
with it is destroyed. An error code is returned to the user process via the mailbox
specified in the wclose request message.

3. DPRINTF: The window handle is extracted from the request message. The string
to be displayed is written on to the display buffer of the virtual window one char-
acter at a time. If this window is currently displayed on the screen then each
character with its attributes is also copied on to the video memory. The cursor
positions are accordingly updated in the virtual window.

4. CHANGE_WINDOW: This message is received from the keyboard interrupt han-
dler when the F1 key is pressed. The window server refreshes the display with
the contents of the active virtual window that follows the currently displayed win-
dow in the virtual window array.

All window operations are executed serially by the window server in FIFO
order. This preserves the integrity of the window data structures and obviates the need for
any critical sections in the window system.

31

2.4.2 The Keyboard System

Keyboard input is processed by a second level interrupt handler and the key-
board server process. All keystrokes are directed to the window currently displayed. The
microcomputer hardware generates an interrupt every time a key is pressed or released.
Each interrupt is accompanied by a single byte scan code on port 0x60 and a single byte
status code on port 0x61. The scan code uniquely identifies the keystroke. The interrupt
handler must clear the status line after processing a keystroke. Otherwise, the hardware
will not be able to generate an interrupt on the next keystroke.

The interrupt handler and the keyboard server process communicate through
a mailbox called the KEYBOARD BOX. This mailbox is created by the keyboard server
process at system initialization. On the occurrence of an interrupt the interrupt handler
reads the scan code and status code. All key release interrupts except the shift key release
interrupt are ignored. All other scan codes are conditionally sent to the window server with
a timeout of zero timer ticks.

2.4.2.1 The Keyboard Server

The keyboard server listens to the KEYBOARD_BOX mailbox and processes
the scan codes it receives from the interrupt handler . If the scan code is for the Esc key
the system is halted. If it is for the F1 key, a request to change the displayed window with
the next active virtual window is sent to the window server. Pressing or releasing the shift
key toggles a shift_key_flag that is used to control the case of the characters. All other
scan codes are used to look up a translation table for the corresponding ascii characters
which are then sent to the keyboard mailbox associated with the currently displayed window.
The server can buffer up to 10 characters in the mailbox associated with the window after
which the characters are discarded. Keyboard input with echo processing is illustrated in
figure 2.7.

32

ch Application Mailbox
aracter Process <t— | APPLICATION’Y
received and . .- »= KEYBOARD Character
o INPUT BOX @ keyed
. Mailbox
‘ Echo on Window @ WINDOW @
screen Server D BOX <\

W
®)

Keyboard
Server

Q» © Mailbox
Keyboard fpterrupt _— 5 | KEYBOARD
interrupt scan code BOX

Figure 2.7 Keyboard input with echo processing

The application run-time library includes functions for providing keyboard
access to application processes. keyread reads a character but does not echo it on the display
window. getch reads a character and echos it on the window. dscanf is similar in function
to standard C language scanf. However, not all format specifications are currently sup-

ported.

33

3. Performance Evaluation

The evaluation of a computer system’s performance is of prime importance
to system designers. The performance of various system components, which may be in-
fluenced by acting on such variables as hardware speed, is useful in problems concerning
the choice of hardware for the system. It also aids in the prediction of when in the future
the capacity of an existing system will become sufficient to process the installation’s work-
load with a given level of performance. Performance evaluation is also of importance to
installation managers who are concerned with a balanced and cost-effective usage of system
components, while providing satisfactory user response time.

Performance of a system can be discussed only in the context of what the
system is required to do. User’s applications, once translated into programs and commands,
can be characterized by the type and the amount of resources the system will have to allocate
to execute these programs and commands. The total of resource demands generated by
the user applications represent the system workload.

3.1 Performance Measures

Performance is characterized by a set of quantitative parameters called per-
formance measures. Response and throughput are two metrics commonly used in characteriz-
ing performance. Response is a measure of the elapsed time required to complete a task.
Throughput is the measure of how many units of work per unit time the system is complet-
ing. In general it is not possible to provide the shortest possible response time and the
highest possible throughput. This follows from the fact that the fastest response will occur
when the system is as lightly loaded as possible. But under conditions of light load through-
put will also be low.

Throughput may be expressed in many ways: as the number of programs
processed per unit time, the amount of data processed per unit time, the number of requests
processed per unit time, and so on.

Throughput and response are influenced by many factors, among which are
the characteristics of the workload with which it is evaluated, the system’s hardware charac-
teristics, the degree of concurrency among participating processes, and the algorithms used
for assigning system resources to the programs being executed.

Aspects of a CIM environment require both short response time and high
throughput capability. Fast response is an absolute necessity in performing machine control
functions in near real-time. Conversely, the large volumes of data generated by machine

34

monitoring applications place high throughput demands on a system. In order to function
correctly, a CIM system must possess sufficient capacity to sustain the throughput and re-
sponse demands placed upon it. However, significant excess processing capacity should
be avoided since it drives up system price but provides no better performance than a proper-
ly configured system.

The response and throughput requirements of a CIM system are determined
by the collection of manufacturing machinery attached to the CIM network. The throughput
and response requirements of each machine are provided by the machine’s manufacturer.
The throughput and response requirements of the entire distributed CIM system can be
obtained by combining the requirements of each component.

The objective of this study on performance of MicroCIM is to characterize
sustainable loads on Intel’s 80286 and 80386 based control PCs. For each control PC, sus-
tainable network and local interprocess communication throughput and response times are
examined. This characterization will enable a person configuring an apparel CIM network
to determine how many manufacturing machines can be attached to a given cell controller
and how many cell controllers can be supported by a given type of control PC.

3.2 The Test Workload

The test workloads used in the study are designed to stress the network and
local interprocess communication mechanisms. They are characterized by minimum I/O
operations and maximum CPU utilization for communication operations. The exclusion
of I/O operations from the test workload is justified because the I/O interface that may
be used in the actual CIM environment may be very different from the I/O interface incorpo-
rated in the test system.

A unit of workload is defined to be the computation required by a set of two
process: one that only sends messages and another that receives these messages. These
two processes are run on the same node when measuring local IPC and across different
nodes when measuring network IPC. Several experiments with exponential interarrival
times between successive requests generated by the test programs were conducted. It was
observed that the objectives of this study were best satisfied when the workload was one
in which requests were generated continuously, that is, with zero interarrival time. This
observation is based on the following reasons:

¢ The test workload is not designed to simulate the resource demands of an actual
CIM network. It is designed to determine the throughput and response of the
system under conditions of peak load.

35

e Experiments have shown that the control PC is capable of handling workloads
of up to three units at peak throughput. Extending the workload beyond three
units does not result in any improved utilization of system resources. However,
to achieve the same amount of load on the system by using a probabilistic model,
a workload of greater than six units must be used. Memory limitations in the
test system preclude the possibility of running more than six multitasking pro-
cesses.

* A non-probabilistic workload model is easily reproducible on different machines.
Hence, the performance measures show a direct reflection of the change in the
experimental parameters, namely, the hardware speed, the load on the system
and the length of the messages.

Throughput is measured in bytes per second and messages per second. The
response time is a measure of the time taken to complete one send/receive operation. It
is expressed in milli seconds.

3.3 Results

The tests were conducted with three machines as the control PCs: an 80386
PS/2 Model P70 running at 20 MHz, an 80286 PS/2 Model 30 running at 10 MHz and a
PC AT running at 8 MHz. The test configuration contained two PCs - one functioning as
the control PC and the other as a cell controller. They were connected by a coax cable.

The operating system was configured with a time slice of 100 timer ticks.
System processes run at a higher priority than application processes. All the benchmark
programs, which run as application processes run at the same priority.

Time measurement facilities were provided by a software tool that could sam-
ple the 8253 timer in the PC hardware. It provides a resolution of 840 nanoseconds.

For each control PC, response and throughput are measured under conditions
of varying load and message length. In all the experimental cases the load was increased
from one unit to three units. At three units of load the inter process communication mecha-
nism is stressed to its maximum. Hence increasing the load beyond three units does not
result in any significant change in the response or throughput. The maximum message
length (248) is fixed by the maximum packet size that the LAN can handle.

3.3.1 Local IPC

Figures 3.1(a) and 3.1(b) show the maximum throughput for local inter pro-
cess communication in kilo bytes per second and messages per second for each of the three
control PCs. The difference in maximum throughput between the three machines reflects

36

the differences in the speed of the hardware. The number of messages exchanged per sec-
ond does not vary significantly with the length of the messages. This shows that the overhead
incurred by increasing the length of messages is not significant in local IPC. Response time
is defined to be the amount of time taken to complete one send/receive operation. Figure
3.2 shows the response times for each of the control PCs. Response times do not vary much
with the message length. Therefore the graph shows the mean response time for various
message lengths against increasing load. The marginal increase in response times with in-
creasing load is because there can be no overlap in the execution of local IPC operations
as they are executed as critical sections.

3.3.2 Network IPC

~ Figure 3.3 shows the network throughput for the various control PCs. The
maximum throughput (in kilo bytes/sec) was 25.5 on the 386 PS/2, 17 on the 286 PS/2
and 13.5 on the PC AT. The corresponding maximum throughputs in messages/second as
shown in figure 3.5 were 99, 69 and 55. In this case the remote PCs were also running
the operating system. It is interesting to note that the maximum throughput in messages/sec
does not vary much with message length on the 386 PS/2. However, on the 286 PS/2 the
throughput varies by as much as 37% between the maximum and minimum message lengths
and by 35% on the PC AT. This shows that at peak loads the 386 PS/2 has adequate process-
ing power to handle the network traffic.

The performance of the control PC may be affected by the processing power
of the remote PC. This is of particular importance in the case where the control PC is faster
than the remote PC. For example, as shown in the performance evaluation of the local
IPC, the 386 PS/2 is about 2.5 times faster than the 286 PS/2. To identify the effects of
the remote PC on the control PC’s performance, the benchmark programs were executed
without the operating system on the remote nodes. That is, the remote node contained only
that part of the network management system necessary to communicate with the ARCNET
adapter. All the packets that were received on the remote node were discarded.

Figures 3.4 and 3.6 show the throughput without the operating system on the
remote nodes. With the 386 PS/2 as the control PC, the maximum throughput (figure 3.4)
increased by 51% from 25.5 Kilo bytes/sec to 38.6 kilo bytes/sec. There is also a proportion-
ate increase in the throughput (figure 3.6) measured in messages/sec. However, there is
no significant change in the throughput with the 286 PS/2 and the PC AT, both of which
had a faster machine (386 PS/2) as the remote node. This can be attributed to the fact
that data packets can be put on the LAN only as fast as it can be taken out of it. Thus

37

it is desirable to have adequate processing power on the cell controller if it is expected
to exchange large amounts of data with the control PC.

Response time is defined to be the amount of time taken to complete one
send/receive operation across the network. The response times with and without the operat-
ing system on the remote node are shown in figures 3.7 and 3.8 respectively. In all of
the six graphs in these two figures, it can be observed that the response times decrease
with increasing load. This is a result of better utilization of the network IPC mechanism
with an increase in the degree of concurrency among the benchmark processes. The average
response times are about 10 ms on the 386 PS/2, 14 ms on the 286 PS/2 and 17.5 ms on
the PC AT.

38

LOCAL IPC THROUGHPUT

240
210
180
Maximum
Throughput
in
K Bytes/sec %
90
60
30
386-PS2 286-PS2 PC-AT
(a)
500
450
400
350
Maximum .
Throughput 300
in A

messages/sec 2°

2004

386-PS2 286-PS2 PC-AT
(b)

Figure 3.1 Local throughput on various control PCs

39

LEGEND

Message Length
in bytes
248

124

LOCAL IPC RESPONSE

w3

X

= PC-AT
3
Response 286-PS2
in |
milliseconds

Load

Figure 3.2 Local Response on various control PCs

40

NETWORK IPC THROUGHPUT

40000
36000
32000
28000‘ LEGEND
Maximum 1 Message Length
Thropghput 24000 in bytes
in i
Bytes/sec 20000_ 248
16000 124
i 20
12000
. 2
8000

386-PS2 286-PS2

Figure 3.3 Throughput on various control PCs with OS on remote PC

40000

36000

32000

28000
Maximum -
Throughput 24000

n h
20000

Bytes/sec

16000

12000

8000

386-PS2 286-PS2

PC-AT

Figure 3.4 Throughput on various control PCs without OS on remote PC

NETWORK IPC THROUGHPUT

LEGEND

240
210
180
Maximum
Thrqughput 150
in

messages/sec
120
90
60
30

386-PS2

Message Length

in bytes
248

124

PC-A

286-PS2

Figure 3.5 Network throughput on various control PCs with OS on remote PC

240

Maximum

Throughput
in
messages/sec

386-PS2

2
3
3

286-PS2

PC-AT

Figure 3.6 Network throughput on various control PCs without OS on remote PC

42

NETWORK IPC RESPONSE

LEGEND
Message
Length

S 248

R e o 124

A4 2 to 24§

386-PS2 286-PS2 PC-AT
20 20 20
1e: 18: 1s: ~
16 16 16-
141 141 141
124 12- 12
Response 4 - 4
in 10 M 104 10
milli- - . .
seconds 8- 8] 8
6: 5: 64
. A 4
4 4 4
2. 2. 2]
0 T3 3 , 0 T 32 0 2% 3
Load Load Load

43

386-PS2 286-PS2 PC-AT
20 20 20
181 181 18-
161 161 161
14: 14: 14:
12 12- 121
fesponse _ _
in 10- 10 10
milli- . . -
seconds 8- 8 8-
6 6 6
4 4)
2- 2: 2:

0 T S S T3 0 5 3

Load Load Load

Figure 3.7 Network response on various control PCs with OS running on remote node

Figure 3.8 Network response on various control PCs without OS running on remote node

4. Conclusions

The development of a small, portable, multitasking distributed operating sys-
tem called MicroCIM has been completed. The distributed system is designed to be a plat-
form on which a complete Computer Integrated Manufacturing environment for the apparel
industry can be based. Currently, the operating system can run on industry standard person-
al computers.

The operating system is designed to be portable across different hardware
platforms. AN ARCNET LAN is currently used as the physical layer. A multitasking kernel
provides facilities for process management, interprocess communication and synchroniza-
tion and memory management. The network management system, which uses the services
of the kernel, provides facilities for intra- and inter-site process communications. The ser-
vices provided by the network management system are accesses by application programs
through the application program interface. A network loader provides remote program load-
ing facilities. A window management system and a keyboard management system provide
interactive input/output facilities to all processes.

An evaluation of the performance of the local and network inter process com-
munication mechanisms for various control PCs, in terms of sustainable throughput and
response, was also presented. The values obtained indicate that MicroCIM will provide
suitable performance in the environment for which it was designed.

44

5. References

Cheriton, D. A., The V distributed system. Comm. of the ACM 31, 3(Mar. 1988), 314-333.

Domenico, F., Serrazi, G., Zeigner, A. Measurement and Tuning of Computer Systems. Pren-
tice Hall, Inc., 1983.

Fortier, J. P., Design of Distributed Operating Systems — concepts and technology. Intertext
Publications. Inc., 1986.

Lampson, B. W., et. al., Distributed Systems — Architecture and Implementation. Lecture Notes
in Computer Science, 105, Springer-Verlag, 1981.

Lampson, B. W., Designing a global name service. In Proceedings of the 5th ACM Conference
on Principles of Distributed Computing (Calgary, Canada, Aug.), ACM, New York, 1986. pp.
1-10.

Liskov, B., Distributed programming in Argus. Comm. of the ACM 31, 3(Mar. 1988), pp.
300-313.

Milenkovic, M., Operating Systems — concepts and design. McGraw-Hill Book Company,
1987.

Pimentel, R. Juan., Communication Networks for Manufacturing. Prentice-Hall, Inc., 1990.

Svobodova, L., Computer Performance Measurement and Evaluation Methods: Analysis and
Applications. American Elsevier Publishing Company, Inc., 1976.

MicroCIM

An Operator’s Manual

Dr. J. M. Westall
Dr. A. W. Madison

Bapiraju Buddhavarapu
Sudhir Moolky

Department of Computer Science
Clemson University
Clemson SC 29634-1906

1.1 Introduction

This manual describes the following procedures :

a) Starting microCIM

b) Working with the console window and commands
c¢) Other system/user windows

d) Shutting down microCIM

e) Modifiying and recompiling microCIM

1.2 Installing microCIM

The microCIM distribution is organized as follows. The directory \source has
the source files of microCIM. It also has three system object files which are needed when
compiling microCIM application programs. The directory \bin contains the microcim ex-
ecutable and a definition file “arcnet.def”. Finally the \apps directory contains “c0l.obj”
and "cc.bat”. These are to be used when compiling application programs. Create a directory
called \microcim on your machine and copy(with xcopy —s) the directory structure as it
is. When compiling application programs in the \apps directory keep in mind that the Turbo
C linker looks for the system object files in the current directory(\apps). Modify "cc.bat”
to reflect the location of these object files. Currently they are located in \source.

The definition file is used to set four system parameters. They are(in order) as
follows :

1. <IRQ #> : This identifies the IRQ line used by the ARCNET adapter board.
For example, if IRQ 3 is used by the adapter board then the value will be 3.

2. <I/O port> : This identifies the I/O port used in communicating with the LAN
controller chip on the ARCNET adapter board. For example, if port number 2EQ is being
used then this field will be 2EQ.

3. <buffer address> : The ARCNET adapter has an on board memory which it
uses to store messages during transmission/reception. This is mapped to the computer’s
main memory at <buffer address>. For example if the on board memory is mapped at main
memory location 0D000 then this value will be 0D000.

4. <video buffer address> : This identifies the address in main memory where
the video buffer is mapped. For monochrome monitors it is 0B000 whereas it is 0B800
for color monitors.

An example of all the fields in the definition file is

5 2E0 0C600 0B000
where IRQ line #5 is used, port 2E0Q is used for communication with the LAN controller
chip, the on board memory is mapped to main memory location 0C600 and a monochrome
monitor is being used on the computer.

The first three parameters are obtained by using the reference diskette for MicroChannel

bus boards. The configuration viewing utility on the diskette will show the values for which
the ARCNET adapter board has been set.

1.3 Starting microCIM

Two files are required to start up microCIM. They are ”microcim.exe” and ”arc-
net.def’. MicroCIM will read the definition file when starting up and set internal parameters
according to these field values. To start up microCIM type "microcim”.

1.4 Working with the console window and commands

Once microCIM has been started up, the console window comes into focus. There
may be many windows active at a given time but only one will be displayed on the screen.
The F1 key shuffles and displays the active windows in a round robin manner.

There are a limited number of commands one can use in the console window.
They are listed below :

a) load <file.exe> <src_netid> <dest_netid> : This command invokes the network
loader. Three arguments are required, the name of the executable file(file.exe), the network
id of the machine on which the executable is located(src_netid) and the network id of the
machine on which the executable is to be executed(dest_netid). For example the command
»load server.exe 255 126" copies the executable file from the machine whose network id is
255 and executes it on the machine whose network id is 126. The network id of a machine is
the same as the id of its ARCNET adapter card.

b) nodeid : This command will display the network id of the machine on which it
is invoked.

c) active : This command lists all the active processes in the system. For each
process listed, its type(system or user), priority, process id, status(running or ready) and
number of mailbox handles are also displayed.

d) blocked : This command lists all the processes which are blocked on a mail-
box. For each process listed, its type(system or user), priority, process id, name of mailbox
blocked on etc are also displayed.

e) checkstack <pid> : This command checks if the process whose id is <pid> has
suffered a stack overflow. It also checks stack integrity by searching for the stack signature
which'is put on the stack at process creation time.

f) mail : This command lists all the mailboxes in the system. For each mailbox
listed, its name, owner process id, number of links to the mailbox, number of message slots,
size of message buffer, id’s of processes blocked on a send or receive etc are also displayed.

g) memleft : This command will display the amount of free memory in the sys-
tem. It will also display the size of the largest available free block.

1.5 Other system/user windows

|

Besides the console, there may be other windows active. These will be opened by
other system or user processes. Only one window is displayed on the screen at any given
time, so use the F1 key to shuffle to the next window. If a process is expecting keyboard
input you should first display it’s window on the screen before typing anything on the key-
board.

1.6 Shutting down microCIM

Pressing the ESC key will shut down microCIM and return you to the DOS
prompt. If the system has hung up then pressing the ESC key may not always work. If it
doesn’t, press the CTL-ALT-DEL keys simultaneously to reboot DOS. Sometimes that will
not work either. In that case reset the computer by either pressing the reset button(if pro-
vided) or by powering off and on.

MicroCIM

A Programmer’s Manual

Dr. J. M. Westall
Dr. A. W. Madison

Bapiraju Buddhavarapu
Sudhir Moolky

Department of Computer Science
Clemson University
Clemson SC 29634-1906

Table of Contents

CINtrOdUCHION .« oot 3
. Modifying and recompiling microCIMo 4
. Compiling application programsc..eeeeeeeeeineninannnn. 5
CLAbrary routines ooot it 6
CHello World ..o o 7
. Local interprocess communication and synchronization 8
. Remote interprocess communication and synchronization 12
. Connection oriented message PasSingvvvuneniiiiiiiinnen.. 16
. MicroCIM function referenceovv it 20
9.1 MailboX FOUtINES . .ottt ittt ittt i 20
9.2 Process manipulation routinesoiiniiiinenannnn. 24
9.3 MEMOIY FOULNES .« vvvvnt ittt ineeineiaenenanannnns 27
9.4 Window and /O routines oot ininininnnnennnannn 29
9.5 Network datagram service routinescovitenennn. 31
9.6 Network virtual circuit routines 34

1. Introduction

This manual is a guide to writing application programs for microCIM. Example pro-
gram segments are shown which illustrate the use of various functions. Finally the syntax of

all functions is given.

2. Modifying and recompiling microCIM

If any modifications are made to microCIM it needs to be recompiled. For recom-
pilation you will need Borland’s Turbo C editor/compiler(at least version 2.01) and also
Borland’s Turbo Assembler(at least version 1.0). The recompilation process is facilitated by
the use of a makefile. You will need the two files "makefile” and ”microcim.rsp” to be able to
recompile microCIM. The “makefile” lists all the files which are part of microCIM. ” Micro-
cim.rsp” lists the same files along with the Turbo C library modules for linking using Tlink.
Note that ”makefile” lists only the .c files as dependencies and not the .h files. If you modify
.h files then you will have to delete the corresponding .obj file and then remake. For exam-
ple if you modified "netcmgr.h” then you have to delete ”netcmgr.obj” and then recompile the
system. However if you modified “netcmgr.c” then you do not need to delete ”netcmgr.obj”.
You can straightaway recompile the system.

Once the system files have been modified just type “make” at the DOS prompt.
This will automatically recompile and link the modified system files. Listed below are some
of the files which represent important system functions.

File(s) Contain

microcim.c console process

stack.c, syscalls.c process manipulation

dalloc.c memory routines

syscalls.c, oslib.c mailbox routines

iocalls.c window routines

iocalls.c keyboard routines

api.c, netapi.c datagram network facilities

api.c, netapi.c, netcmgr.c virtual circuit network facilities
loader.c network loader (sender and receiver)

3. Compiling application programs

All application programs need to be compiled and linked in a way which is different
from compiling and linking microCIM. A batch file "cc.bat” has been provided to facilitate
this process. To compile an application program "app.c” just type "cc app”. Do not give the
.c extension, it is automatically appended.

Certain files are linked with each application program. The most important of them is
»c0lobj”. This is Borland Turbo C Compiler’s large model start up file which has been
modified to work with microCIM. If c0l.obj” is not present then compile ”c0l.asm” with
Tasm, the Turbo Assembler. The command is simply "tasm c0l.asm”. The batch file
»cc.bat” will attempt to link the following microCIM libraries with the application program :
oslib.obj, api.obj and iocalls.obj. Make sure that these libraries are present otherwise compila-
tion will fail.

In addition ”cc.bat” provides paths to Borland Turbo C’s include and lib directories.
Make sure that these are correct according to the system on which the application program is
being compiled.

To run a compiled application program, start microCIM and load the executable
from the console as described in the operators manual. If the application opens a window
you have to press the F1 key to be able to see it.

4. Library routines

There are many Turbo C library routines which cannot be used. MicroCIM provides
alternate routines which are shown below.

Do not use Use instead
printf(), scanf(), getc(), wopen(), dprintf(),
getchar() etc. Other dscanf(), getscr()
graphics and window routines. wclose() etc.
malloc(), free() and dmalloc(), dcalloc(),
calloc() dfree(), dmemleft()
strdup() none

exit() terminate()

String routines like strepy(), stremp(), sscanf(), strcat() etc. and assert() can be used. File
routines like fopen() etc. can also be used.

/‘

5. Hello world

Shown below is a hello world program segment.

>*/

#include <stdio.h>

#include <oslib.h>

int my_window;

[*<

/* Open a window to display messages */
my_window = wopen();

if(NULL == my_window)
{
/* error */
terminate();

}

/* Print a hello world message */

counter = 1;
dprintf(my_window, "%d. Hello world.\n”, counter);

/* sleep 5 seconds so that the message can be viewed */
/* 18 clock ticks = 1 second */

snooze(18*5);

wclose(my_window);
*/

6. Local interprocess communication and synchronization

This can be achieved using mailboxes and message passing. Shown below is the code
for a server which creates a mailbox and then reads messages from it. Also shown is a client
which opens the server’s mailbox and writes a message into it. Note that the message length
and the server’s "address” are well known.

/* >*/
#include <stdio.h>
#include ”oslib.h”

#define MAX_BUF_LEN 50

/¥ >*/
void server()
[*<—mm e ——— */
{

int my_window;

MAILBOX *talk_box;

int mode;

int num_buffers;

char message_buffer] MAX_BUF_LEN |;
int return_value;

int mbox_count;

char mbox_name[20];

/* Initialize some values */

mode = M_SEND;
num_buffers = §;
mbox_count = 0;

/* Open a window */

my_window = wopen();
if(NULL == my_window)
{

terminate();

}

[*<

/* Create a mailbox to communicate with the client */
/* This is the well known "address” */

sprintf(mbox_name, ”mailbox #%d”, mbox_count);
talk_box = mcreate(mbox_name, mode, num_buffers,
MAX_BUF_LEN);

if (NULL == talk_box)

{
dprintf(my_window, ”Server Mailbox creation failed.\n”);
snooze(18*5);
wclose(my_window);
terminate();
}

/* Go into an infinite loop and read messages from clients */
/* After reading the message, display it in the window */

while(1)
{

return_value = mreceive(talk_box, message_buffer,
MAX_BUF_LEN);

if (0 > return_value)

{
dprintf(my_window, ”Server Bad receive on mailbox.\n");
mdestroy(talk_box);
snooze(18*5);
wclose(my_window);
terminate();
}
else
{
message_buffer[return_value] = "\0’;
dprintf(my_window, "Received : %s”, message_buffer);
}

*/

#include <stdio.h>
#include "oslib.h”

A >*/

void client()

[* <~ */

{

int my_window;

MAILBOX *my_mbox;

char
int

int

client_message[MAX_BUF_LEN |;
message_length;

return_value;
/* Open a window */

my_window = wopen();
if(NULL == my_window)
{

terminate();

}

/* Open the server mailbox. It’'s name should be well known */

my_mbox = mopen(”mailbox #0”);
if (NULL == my_mbox)

{
dprintf(my_window, "Client : Server mailbox open failed.\n”);
snooze(18*5);
wclose(my_window);
terminate();
}

/* Send a message to the server */

sprintf(client_message, "Hello from client to server”);
message_length = strlen(client_message);

return_value = msend(my_mbox, client_message, message_length);
if (0 > return_value)

{

dprintf(my_window, ”Client send failed.\n");

}

/t

else

dprintf(my_window,

/* Finish up */

snooze(18*5);
mclose(my_mbox);
wclose(my_window);

"Client send successful.\n");

7. Remote interprocess communication and synchronization

Mailboxes are insufficient to handle this need. Therefore we use the network facili-
ties. There are two types of services provided by the network layer, a potentially unreliable
message passing mechanism(datagrams) and a totally reliable one(connection oriented
management).

First we show the datagram approach. Like the previous example, we have a server
which opens a network port and listens for messages in an infinite loop. Then we have a
client who sends messages to the server using the network facilities. The client also attempts
to load an executable program. The loaded application program will start running as soon as
the loading is complete.

#include <stdio.h>
#include ”oslib.h”
#include ”network.h”

#define MAX_BUF_LEN 50

int my_window;

int num_buffers;
int status;

int mesg_count = 0;
int net_handle;
struct sidtype cl_add;
char cl_mesg[MAX_ BUF_LEN+1];
int rcv_len;

/* >*/

void net_server()

/*< */

{

my_window = wopen();
if(NULL == my_window)
{

terminate();

}
dprintf(my_window, "SERVER : It’s alive It’s alive\n”);

/* Open a network port for communication */

/* Set number of port buffers to 75 and size of each buffer to 50 */
/* The port is named "SERVER” */

12

/*

num_buffers = 75;
status = dg_open0("SERVER”, &net_handle, MAX_BUF_LEN,
num_buffers);

if (status)
{

dprintf(my_window, ”Server could not open port.\n");
/* error handling */

}

while(1)
{
/* read a message from the port if any */
/* if no message, then block till one becomes available */

/* the sender’s node and port id will be available in */
/* ”cl_add” when we return from this call */

status = dg_recv0(net_handle, &cl_add, cl_mesg,
MAX_BUF_LEN, &rcv_len);
if (status)
{
dprintf(my_window, ”Server Bad receive on port.\n”)
/* error handling */

dg_close0(net_handle);
wclose(my_window);

terminate();
}
else
{
cl_mesg[rcv_len | = "\0’;
dprintf(my_window, "RECV from %d : %s\n”,
cl_add.node, cl_mesg);
++mesg_count;
dprintf(my_window, "Count : %d\n\n”, mesg_count);
}

} /* end of while(1) */

13

b

*/

#include <stdio.h>
#include "oslib.h”
#include ”network.h”

#define MAX_BUF_LEN 50

/* >*/

void net_client()

[* < */

{

char cl_mesg[MAX BUF_LEN+1];
char port_name[20];
int mesg_len;

int status;

struct sidtype serv_add;
int net_handle;

int node_id;

int pid;

int msgcount;

/* Get the network id of our host machine */
/* Then get our process id */

node_id = getnodeid();
pid = getpid();

/* Create a message to send to the server */

sprintf(cl_mesg, "Hello networking world.”);
mesg_len = strlen(cl_mesg); '

snooze(18*10);

/* Depending on the node id, call the network loader to load a program */
/* The loader loads the executable from node 126 onto node 255 or */
/* does the reverse */

if (node_id == 126)
loader(”mclt.exe”,126,255);
else if (node_id == 255)
loader(”mclt.exe”,255,126);
else
terminate();

14

/*

/* Open a port with name "CLIENT” to communicate with the server */

sprintf(port_name, "CLIENT/%d/%d”, nid, pid);
status = dg_open0(port_name, &net_handle, 50, S);
if (status)

terminate();

/* Find the server’s network address and port id using it’s well */
/* known port name */

status = dg_findid0(net_handle, "SERVER”, &serv_add);

if (status)
{
dg_close0(net_handle);
terminate();
}
for(msgcount = 0; msgcount < 25; msgcount++)
{
/* send 25 messages to the server */
dg_send0(net_handle, &serv_add, cl_mesg, mesg_len);
}

/* close and return */

dg_close0(net_handle);

*/

15

8. Connection oriented message passing

The previous section introduced you to the datagram network facilities. In some cases
where reliability of the message passing network is of absolute necessity, the datagram
approach has a likelihood of failing. The connection oriented message passing system guar-
antees delivery of messages from the sender to the receiver. It also guarantees their order-
ing. Below is shown the same server/client example from the previous subsection modified
to use the connection oriented message passing facilities.

#include <stdio.h>
#include "oslib.h”
#include "netdefs.h”
#include "netcmgr.h”

#define MAX_BUF_LEN 50

/* >*/
void interconn_server()

/*< */
{

int handle;

char clt_buf[50];

int msg_len;

int status;

int my_window;
struct sidtype clt_add;

/* Open a window */

my_window = wopen();
if(NULL == my_window)
{

/* handle error */

}

dprintf(my_window, “Interconnect server is OK.\n”);

/* Open a network port for communication. Name it INTERC_SERV”. */
/* This will be the well known port name. Allot 5 message buffers */
/* with each being 50 bytes in length. */

status = dg_open0("INTERC_SERV”, &handle, 50, 5);

if (0 != status)

16

dprintf(my_window, ”Server : Couldn’t open port.\n");
snooze(18*S5);

wclose(my_window);

terminate();

/* Perform a blocking read on the port for messages from clients */
/* Note that the connection management is only simplex and in this */
/* case it is from client to server. Therefore the server is unaware */
/* of the connection management and receives the messages as if it */
/* were handling datagram messages */

while(1)
{
dprintf(my_window, ”Waiting for messages..... \n”);
status = dg_recv0(handle, &clt_add, &clt_buf, 50, &msg_len);
if (0 != status)
{
dprintf(my_window, "Bad recv by server.\n");
while(1);
}

clt_buf[msg_len] = "\0’;
dprintf(my_window, clt_buf);

/* Sleep a long time so that client messages will not be */

/* read. Hopefully this will force the client to timeout */

/* This will also cause the server’s port buffer to overflow since */
/* the client will continue to send messages */

dprintf(my_window, "\nSleeping a bit...\n");
snooze(18*39);

}

dprintf(my_window, "Am finished.\n");
dg_close0(handle);
wclose(my_window);

/*

>*/

void interconn_client()

/*<

*/

{

int
int
int
struct
char
int
int
int
int

i

handle;
handle_table[S];
sidtype serv_add;

mesg_buf[75];
my_pid;

status;
my_window;
mesg_count = 0;

my_window = wopen();
if(NULL == my_window)
{

/* handle error */

}

dprintf(my_window, "Interconnect client on screen.\n");

/* Typically the network address and port id of the server is */
/* is found using its well known port name "INTERC_SERV” */

status = dg_findid0(5, "INTERC_SERV”, &serv_add);

if(status)

{
dprintf(my_window, ”"Couldn’t locate server address.\n”);
while(1);

/* Open a virtual connection to the server using the server */

/* address just obtained. Note that this opens up a port for */

/* communication with the server. Therefore just like the datagram */
/* approach we need to specify a port name, message length and */
/* message buffer length */

status = vc_open("INTERC_CLT”, &handle, &serv_add, 50, 10);
if (0 != status)
{

snooze(18*5);

18

wclose(my_window);
terminate();

}

dprintf(my_window, "Did a vc_open for server address.\n”);

/* Send some messages to the server on the connection and then */
/* terminate */

while (1)
{
++mesg_count;
sprintf(mesg_buf, ”Client at node %d sending message %d”,
getnodeid(), mesg_count);
status = ve_send(handle, mesg_buf, strlen(mesg_buf));
if (0 != status)

{
dprintf(my_window, ”Bad send by client.\n");
while(1);
}
else
{
dprintf(my_window, ”Successful send by client.\n”);
}
snooze(18*10);
if (8 == mesg_count) break;
}
dprintf(my_window, "Finished sending messages.\n”);
snooze(18*5);

wclose(my_window);

vc_close(handle);

9. MicroCIM function reference

9.1 Mailbox routines :

#include ”oslib.h” /* for all mailbox routines */

Syntax MAILBOX *mcreate(name, mode, nslots, buflen);
char *name;
int mode, nslots, buflen;

Remarks mcreate creates a mailbox and names it name. The mode is M_SEND or M_RE-
CEIVE or M_SENDRECEIVE and specifies whether messages can only be
sent to the mailbox, read from the mailbox or both. The owner of the mailbox
can read and send messages irrespective of the mode. The mailbox is created
with nslots number of message buffers and each buffer is buflen bytes in size.
mcreate returns a handle which is used for subsequent operations on this mail-
box. The process which creates a mailbox becomes it’s owner. When the mail-
box has served it’s purpose the owner should use mdestroy to destroy the mail-

box.
Return value
NULL Creation of mailbox failed.
non NULL Mailbox handle is returned.
Syntax int mdestroy(handle);

MAILBOX *handle;

Remarks mdestroy destroys a mailbox which was created using mcreate. Only the owner
of a mailbox may destroy it. If any processes are blocked on the mailbox then
they receive a failure code. All messages remaining in the mailbox are lost.

Return value

0 Mailbox destroyed and buffer space
deallocated.

-1 Error. Mailbox does not exist.

-2 Error. Calling process is not the
mailbox owner.

>0 # of processes which have not yet
closed this mailbox. The mailbox is
destroyed but the buffer space is not
deallocated until the last mclose.

20

Syntax

Remarks

Return value

MAILBOX *mopen(name);
char *name;

A process(non owner) gains access to a mailbox using mopen. The mailbox
must have been created prior to executing this call. After opening a mailbox
the process can send and/or read messages depending on the mode with which
the mailbox was created. When the process finishes using the mailbox it must
be closed using mclose.

NULL Open failed.
non NULL Mailbox handle is returned.
Syntax int mclose(handle);
MAILBOX *handle;
Remarks A process(non owner) releases access to a mailbox using mclose. If the pro-

Return value

cess owns the mailbox then it should use mdestroy instead of mclose.

0 Successful close.
-1 Invalid mailbox handle.
-2 Caller is the owner of the mailbox.

Use mdestroy instead of mclose.

Syntax

Remarks

Return value

int msend(handle, msg, len);
MAILBOX *handle;

char *msg;

int len;

msend is used to send a message msg to a mailbox which is specified by handle.
Handle is obtained by calling mopen. Len denotes the length of msg. If msg is
longer than the length of the mailbox buffer, it will be truncated. The process
executing msend will block indefinitely until a free message buffer becomes
available. The call will fail if the owner process did not create the mailbox
with an M_SEND or M_SENDRECEIVE mode.

>=0 Send was successful. This also
indicates the number of bytes sent.

21

-1 Invalid mailbox handle.

-2 Mailbox mode is receive only.
-3 Mailbox is full.
Syntax int msendc(handle, msg, len, sleeptime);
MAILBOX *handle;
char *msg;
int len, sleeptime;
Remarks msendc is used to send a message msg to a mailbox which is specified by

Return value

handle. Handle is obtained by calling mopen. Len denotes the length of msg. If
msg is longer than the length of the mailbox buffer, it will be truncated. The
process will block for a maximum of sleeptime tics while waiting for an avail-
able message buffer in the mailbox. The time unit is based on the timer inter-
rupt frequency on an IBM PC. It is approximately 18 tics per second. The call
will fail if the owner process did not create the mailbox with an M_SEND or
M_SENDRECEIVE mode.

>= 0 Send was successful. This also
indicates the number of bytes sent.
-1 Invalid mailbox handle.
-2 Mailbox mode is receive only.
-3 Mailbox is full and the send timed
out.
Syntax int mreceive(handle, msg, maxlen);
MAILBOX *handle;
char *msg;
int maxlen;
Remarks mreceive is used to read a message from the mailbox into msg. Handle is ob-

Return value

tained by calling mopen. maxlen specifies the maximum number of characters
that will be copied into msg. The process executing mreceive will block indefi-
nitely until a message becomes available in the mailbox. The call will fail if
the owner process did not create the mailbox with an M_RECEIVE or
M_SENDRECEIVE mode.

>= 0 Receive was successful. This also
indicates the number of bytes

22

received.

-1 Invalid mailbox handle.
-2 Mailbox mode is send only.
-3 Mailbox is empty.
Syntax int mreceivec(handle, msg, maxlen, sleeptime);
MAILBOX *handle;
char *msg;
int maxlen, sleeptime;
Remarks mreceivec is used to read a message from the mailbox into msg. Handle is

Return value

obtained by calling mopen. maxlen specifies the maximum number of charac-
ters that will be copied into msg. The process will block for a maximum of
sleeptime tics while waiting for an available message in the mailbox. The time
unit is based on the timer interrupt frequency on an IBM PC. It is approxi-
mately 18 tics per second. The call will fail if the owner process did not create
the mailbox with an M_RECEIVE or M_SENDRECEIVE mode.

>= 0 Receive was successful. This also
indicates the number of bytes
received.

-1 Invalid mailbox handle.

-2 Mailbox mode is send only.

-3 Mailbox is empty and the receive
timed out.

23

9.2 Process manipulation routines :

#include "oslib.h” /* for all process manipulation routines */

Syntax void snooze(tics);
int tics;

Remarks snooze puts the caller to sleep for the specified number of ticks.The time unit s
based on the timer interrupt frequency on an IBM PC. It is approximately 18
tics per second.

Syntax int smunch(pid);
int pid;

Remarks This will kill any process regardless of its type. Only a SYSTEM process is

Return value

allowed to execute smunch.

0 Success.
-1 Process does not exist.
-2 Access violation.

Syntax

Remarks

Return value

int kill(pid);

int pid;

A process of type USER can be killed with kill. A SYSTEM process can be
killed only if it is killing itself.

0 Success.
-1 Process does not exist.
-2 Access violation.

Syntax

Remarks

int getpid();

getpid returns the caller’s process id.

24

Syntax

Remarks

Return value

int check_stack();

check_stack checks the caller’s stack for overflow. This is done by checking the
stack signature at the top of the stack. The stack signature is put there at
process initiation time.

0 Stack has not overflowed.
-1 Stack has overflowed.
-2 Invalid pid.

Syntax int get_stack_usage();

Remarks get_stack_usage returns the number of bytes used up on the caller’s stack.

Syntax void terminate();

Remarks A replacement for the Turbo C exit routine. Unlike exit terminate does not
take any parameters.

Syntax int createprocess(process);
void (*process)();

Remarks This is an internal system function and cannot be used by application pro-

Return value

grams. Createprocess creates a process from a function. System deamons can
be written as functions and then converted to processes using this call. The
process is assigned default values for priority, stacksize, number of mailbox
handles and it’s type(USER or SYSTEM).

-1 Error.
>0 Pid of the created process.

Syntax

Remarks

int pcreate(process, priority, stacksize, nhandles, type);
void (*process)();
int priority, stacksize, nhandles, type;

This is an internal system function and cannot be used by application pro-
grams. Pcreate creates a process from a function. System deamons can be

25

Return value

written as functions and then converted to processes using this call. The prior-
ity, stacksize, number of mailbox handles nhandles, and process type type can
be set. Priority is either USER_PRI or SYSTEM_PRI and type can be USER or
SYSTEM.

-1 Error.
>0 Pid of the created process.

Syntax

Remarks

Return value

int spawn(progblk, priority, stacksize, handles, type);
struct program *progblk;
int priority, stacksize, nhandles, type;

spawn is used to create a process from a loaded program where Progblk repre-
sents the loaded program. This is an internal system function and is not avail-
able to application programs.

-1 Error.
>0 Pid of the created process.

Syntax

Remarks

int getnodeid();

Returns the network id of the host on which the caller is running.

9.3 Memory routines :

#include ”oslib.h” /* for all memory routines */

Syntax void *dmalloc(nbytes);
unsigned int nbytes;

Remarks dmalloc is used to dynamically allocate nbytes of uninitialized memory.

Return value

NULL Requested amount of memory is not
available.
non NULL The address of the start of the block

is returned.

Syntax void *dcalloc(nbytes, nelements);
unsigned int nbytes, nelements;

Remarks dcalloc is used to dynamically allocate memory for nelements each of size
nbytes. The allocated space is initialized to zeros.

Return value

NULL Requested amount of memory is not
available.
non NULL The address of the start of the block
is returned.
Syntax void dfree(memptr);

void *memptr;

Remarks Memory allocated with either dmalloc or dcalloc is freed using dfree.

Return value
None.

27

Syntax

Remarks

unsigned long dmemleft();

dmemleft indicates the amount of memory remaining in the free pool. Because
of external fragmentation, dmemleft is likely to return a value greater than the
amount of memory than can actually be allocated in a contiguous block.

9.4 Window and 1/0 routines :

#include "oslib.h” /* for all window and i/o routines */

Syntax int wopen();

Remarks wopen is called to open a window. A handle is returned and this must be used
in subsequent window operations.

Syntax int wclose(win);
int win;

Remarks This closes a window which was previously opened by wopen. The handle of

Return value

the window is required.

0 Success.
-1 Error.

Syntax int setattr(win, attr);
int win;
char attr;

Remarks Set the attribute of the characters which are printed in the window win. Attrib-
ute values are as defined in the Turbo C manual.

Syntax int getscr(win);
int win;

Remarks Many windows are open in the system at any given time but only one window
is displayed on the screen. Getscr forces win to be displayed on the screen
when executed.

Syntax int dprintf{ win, format, args);

int win;
char *format;
int args;

29

Remarks dprintfis a routine for outputting strings to a window win. Format corresponds
to that in the C printf function. Only %d, %c and %s are allowed in the format.
The window is scrolled when needed.
Syntax int dscanf{ win, format, args);
int win;
char *format;
int args;
Remarks dscanf is a function for inputting data from the keyboard. The format corre-
sponds exactly to the C scanf routine. Only %d, %c and %s are supported.
Syntax int loader(filename, srcnode, targetnode);
char *filename;
int srcnode, targetnode;
Remarks loader is used to load and run an executable file on any node on the network.

Return value

The specified file filename is read from the source node srcnode and then trans-
ferred to targetnode. 1t is then executed as an independent process on target-
node. The length of filename which may include command line arguments
should not exceed 80 characters.

0 Successful load.

-1 File does not exist on source node.
-2 Memory shortage on target node.
-3 Load error.

30

9.5 Network datagram service routines :

#include "network.h” /* for all network routines */

Syntax

Remarks

Return value

int dg_open0(lservice_name, handle, msglen, msgcount);
char *lservice_name;
int *handle, msglen, msgcount;

dg_open0 must be called before any other datagram services are called.
Dg_open0 opens a port for network communication and registers Iservice_name
with the name server. It also creates a buffer pool for the port with msgcount
buffers, each of size msglen bytes. Finally the necessary mailboxes are allo-
cated to the port. A handle is returned which is to be used when requesting
other datagram services.

0 Success.
Non 0 Error.

Syntax

Remarks

Return value

int dg_findid0(handle, rservice_name, service_identifer);
int handle;

char *rservice_name;

struct sidtype *service_identifier;

dg findid0 is used to find out the SAP address associated with rservice_name.
This is done by communicating with the name server since it maintains a table
of service names and SAP addresses. To send datagrams to another process,
the sender process should either know the receiver’s SAP address or it’s rser-
vice_name which can then be used to get the SAP address.

0 Success.
Non 0 Error.

Syntax

int dg_send0(handle, service_identifier, message, len);
int handle;

struct sidtype *service_identifier;

char *message;

int len;

31

Remarks dg_send0 is used to send a datagram to another process. The SAP address of
the other process(service_identifier) is obtained by calling dg_findid0. Message
specifies the message to be transmitted and len indicates it's length.

Return value

0 Success.
Non 0 Error.

Syntax int dg recvO(handle, service_identifier, buffer, len, msglen);
int handle;

struct sidtype *service_identifier;
char *buffer;

int len;

int *msglen;

Remarks dg_recv0 is used to receive datagrams from other processes. The SAP address
of the sending process is returned in service_identifier. Buffer is the location
where the datagram is to be put and len indicates the buffer size. The data-
gram will be truncated if it's size is greater than len. The actual number of
bytes stored in the buffer is returned in msglen. The process calling dg_recv0
blocks indefinitely until a datagram is available.

Return value

0 Success.
Non 0 Error.
Syntax int dg_recvcO(handle, service_identifier, buffer, len, msglen,
timeout);
int handle;

struct sidtype *service_identifier;
char *buffer;

int len;

int *msglen;

int timeout;

Remarks dg recve0 is used to receive datagrams from other processes. The SAP ad-
dress of the sending process is returned in service_identifier. Buffer is the loca-
tion where the datagram is to be put and len indicates the buffer size. The
datagram will be truncated if it’s size is greater than len. The actual number of
bytes stored in the buffer is returned in msglen. The caller will block only for
timeout tics if a datagram is not available. Control will then return to the caller.

32

Return value

0 Success.
Non 0 Error.

Syntax

Remarks

Return value

int dg_pool0(handle, msglen, msgcount);
int handle;

int msglen;

int msgcount;

dg_pool is used to create a buffer pool for a port. The buffer pool is used to
hold incoming datagrams if they arrive when a process is not blocked on a
datagram read. However if the buffer pool itself becomes full then incoming
datagrams will be discarded. An alternate way of creating a buffer pool is via
dg_open0.

0 Success.
Non 0 Error.

Syntax

Remarks

Return value

int dg_close0(handle);
int handle;

A network port opened with dg_open0 must be closed with dg_close0 when it’s
purpose has been served. The buffer pool and mailboxes allocated to the port
are freed and finally the logical service name which was registered with the
name server during dg_open0 is cancelled.

0 Success.
Non 0 Error.

33

9.6 Network virtual circuit routines :

#include "network.h” /* for all network routines */

Syntax

Remarks

Return value

int vc_open(Iservice_name, handle, service_id, msglen,
msgcount);

char *lservice_name;

int *handle;

struct sidtype *service_id;

int msglen, msgcount;

ve_open must be called before vc_send can be used. Vc_open first opens a port
by calling dg_open0. The parameters passed to dg_open are Iservice_name, han-
dle, msglen and msgcount. Service_id is the SAP address of the target process to
which a connection is to be made. The caller should call dg_findid0 first to
obtain the SAP address. Vc_open then communicates with the connection
manager which opens a connection to the target process. A handle is returned
which is required when requesting other virtual circuit services.

0 Success.

LOCAL_CONN_BAD No space in local connection table.
TARG_PORT_BAD Target port is not in use.
TARG_CONN_BAD No space in target connection table.

Syntax

Remarks

Return value

int vc_send(handle, message, len);
int handle;

char *message;

int len;

Once a connection has been established by calling vc_open, a process sends
messages on the connection using vc_send. Vc_send ensures that the messages
reach the target process and also guarantees the ordering of messages sent.

0 Success.

LOCAL_CONN_BAD Local connection entry is messed up.
Do not use the connection anymore.
Close it immediately if possible.

VC_BAD_SEQNO The message sent was not the one the
target expected. Do not use the

34

connection anymore. Close it
immediately if possible.
VC_TGTPORT_BAD Target port is either closed or the
owner of the port changed. In either
case the connection is bad and is not
to be used anymore. Close the
connection immediately if possible.
'VC_SEND_FAILED The message could not be sent. This
possibly indicates that the target
process is fine but for some
unknown reason it is not reading the
messages sent.

Syntax int vc_close(handle);
int handle;
Remarks A connection opened by vc_open should be closed with vc_close when it’s pur-

pose has been served.

Return value
0 Connection has been closed.
CONN_NOT_FREED Connection could not be closed.

35

